Verifiable privacy-preserving single-layer perceptron training scheme in cloud computing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing

While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...

متن کامل

Privacy-Preserving Data Outsourcing in Cloud Computing

In cloud computing, data owners are motivated to outsource their complex data management systems from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data s...

متن کامل

Quantum Privacy-Preserving Perceptron

With the extensive applications of machine learning, the issue of private or sensitive data in the training examples becomes more and more serious: during the training process, personal information or habits may be disclosed to unexpected persons or organisations, which can cause serious privacy problems or even financial loss. In this paper, we present a quantum privacy-preserving algorithm fo...

متن کامل

Preserving User Privacy with Anonymous Authentication in Cloud Computing

Cloud computing offers its flexibility and dynamic nature in terms of its access to resources anytime and anywhere. All data and other resources in cloud storage are managed and controlled by the Cloud Service Provider. They provide security and ensure that the data is protected and free from any vulnerability. However, providing privacy through authentication mechanism is a big challenge. Most...

متن کامل

Regularization by Early Stopping in Single Layer Perceptron Training

Adaptative training of the non-linear single-layer perceptron can lead to the Euclidean distance classifier and later to the standard Fisher linear discriminant function. On the way between these two classifiers one has a regularized discriminant analysis. That is equivalent to the “weight decay” regularization term added to the cost function. Thus early stopping plays a role of regularization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2018

ISSN: 1432-7643,1433-7479

DOI: 10.1007/s00500-018-3233-7